Growth, nutrition, and soil respiration of a mycorrhiza-defective tomato mutant and its mycorrhizal wild-type progenitor

نویسندگان

  • Timothy R. Cavagnaro
  • Adam J. Langley
  • Louise E. Jackson
  • Sean M. Smukler
  • George W. Koch
چکیده

The effects of colonisation of roots by arbuscular mycorrhizal fungi (AMF) on soil respiration, plant growth, nutrition, and soil microbial communities were assessed using a mycorrhiza-defective tomato (Solanum lycopersicum L.) mutant and its mycorrhizal wild-type progenitor. Plants were grown in rhizocosms in an automated respiration monitoring system over the course of the experiment (79 days). Soil respiration was similar in the two tomato genotypes, and between P treatments with plants. Mycorrhizal colonisation increased P and Zn content and decreased root biomass, but did not affect aboveground plant biomass. Soil microbial biomass C and soil microbial communities based on phospholipid fatty acid (PLFA) analysis were similar across all treatments, suggesting that the two genotypes differed little in their effect on soil activity. Although approximately similar amounts of Cmay have been expended belowground in both genotypes, they may have differed in the relative C allocation to root construction v. respiration. Further, net soil respiration did not differ between the two tomato genotypes, but root dry weight was lower in mycorrhizal roots, and respiration of mycorrhizal roots per unit dry weight was higher than nonmycorrhizal roots. This indicates that the AM contribution to soil respiration may indeed be significant, and nutrient uptake per unit C expenditure belowground in this experiment appeared to be higher in mycorrhizal plants. Additional keywords: mycorrhizamutant, mycorrhizas, PLFA, respiration, roots, root respiration, Solanum lycopersicum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Does the presence of arbuscular mycorrhizal fungi influence growth and nutrient uptake of a wild-type tomato cultivar and a mycorrhiza-defective mutant, cultivated with roots sharing the same soil volume?

We investigated the growth and nutrient uptake of the Lycopersicon esculentum symbiosis mycorrhiza-defective plant mutant rmc, challenged with arbuscular mycorrhiza (AM) fungal propagules, in the presence or absence of roots of the commercial wild-type tomato cv. Golden Queen (GQ). Two plants shared the middle (combi) compartment of a horizontal three-compartment split-root pot with one part of...

متن کامل

Arbuscular Mycorrhizas Reduce Nitrogen Loss via Leaching

The capacity of mycorrhizal and non-mycorrhizal root systems to reduce nitrate (NO₃⁻) and ammonium (NH₄⁺) loss from soils via leaching was investigated in a microcosm-based study. A mycorrhiza defective tomato mutant and its mycorrhizal wildtype progenitor were used in this experiment in order to avoid the indirect effects of establishing non-mycorrhizal control treatments on soil nitrogen cycl...

متن کامل

Arbuscular mycorrhizal symbiosis regulates plasma membrane H+-ATPase gene expression in tomato plants.

Regulation by arbuscular mycorrhizal symbiosis of three tomato plasma membrane H+-ATPase genes (LHA1, LHA2 and LHA4) has been analysed in wild-type and mycorrhiza-defective tomato plants. Expression of these genes was differentially regulated in leaves and roots of both tomato phenotypes after inoculation with Glomus mosseae.

متن کامل

Mycorrhization of the notabilis and sitiens tomato mutants in relation to abscisic acid and ethylene contents.

We examined whether the reduced mycorrhization of abscisic acid (ABA)-deficient tomato mutants correlates with their incapacity in ABA biosynthesis and whether this effect is dependent on ethylene production. The mycorrhization of notabilis and sitiens mutants, which have different ABA deficiencies and an excess of ethylene production, was analyzed. Comparative analysis of the ABA-deficient tom...

متن کامل

Worm castings-based growing media with biochar and arbuscular mycorrhizal fungi for producing organic tomato (Solanum lycopersicum L.) in greenhouse.

Organic vegetable production has specific research and innovation requirements which are not shared by other parts of the food and farming sector. A pot experiment was conducted to investigate the interactive effects of few permitted organic inputs such as arbuscular mycorrhizal fungi, biochar, and different ratios of peat:worm casting on tomato (Solanum lycopersicum L.) growth, mycorrhizal dep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008